Showing posts with label Blue Brain Project. Show all posts
Showing posts with label Blue Brain Project. Show all posts

AI - SyNAPSE

 


 

Project SyNAPSE (Systemsof Neuromorphic Adaptive Plastic Scalable Electronics) is a collaborativecognitive computing effort sponsored by the Defense Advanced Research ProjectsAgency to develop the architecture for a brain-inspired neurosynaptic computercore.

The project, which began in 2008, is a collaboration between IBM Research, HRL Laboratories, and Hewlett-Packard.

Researchers from a number of universities are also involved in the project.


The acronym SyNAPSE comes from the Ancient Greek word v, which means "conjunction," and refers to the neural connections that let information go to the brain.



The project's purpose is to reverse-engineer the functional intelligence of rats, cats, or potentially humans to produce a flexible, ultra-low-power system for use in robots.

The initial DARPA announcement called for a machine that could "scale to biological levels" and break through the "algorithmic-computational paradigm" (DARPA 2008, 4).

In other words, they needed an electronic computer that could analyze real-world complexity, respond to external inputs, and do so in near-real time.

SyNAPSE is a reaction to the need for computer systems that can adapt to changing circumstances and understand the environment while being energy efficient.

Scientists at SyNAPSE are working on neuromorphicelectronics systems that are analogous to biological nervous systems and capable of processing data from complex settings.




It is envisaged that such systems would gain a considerable deal of autonomy in the future.

The SyNAPSE project takes an interdisciplinary approach, drawing on concepts from areas as diverse as computational neuroscience, artificial neural networks, materials science, and cognitive science.


Basic science and engineering will need to be expanded in the following areas by SyNAPSE: 


  •  simulation—for the digital replication of systems in order to verify functioning prior to the installation of material neuromorphological systems.





In 2008, IBM Research and HRL Laboratories received the first SyNAPSE grant.

Various aspects of the grant requirements were subcontracted to a variety of vendors and contractors by IBM and HRL.

The project was split into four parts, each of which began following a nine-month feasibility assessment.

The first simulator, C2, was released in 2009 and operated on a BlueGene/P supercomputer, simulating cortical simulations with 109 neurons and 1013 synapses, similar to those seen in a mammalian cat brain.

Following a revelation by the Blue Brain Project leader that the simulation did not meet the complexity claimed, the software was panned.

Each neurosynaptic core is 2 millimeters by 3 millimeters in size and is made up of materials derived from human brain biology.

The cores and actual brains have a more symbolic than comparable relationship.

Communication replaces real neurons, memory replaces synapses, and axons and dendrites are replaced by communication.

This enables the team to explain a biological system's hardware implementation.





HRL Labs stated in 2012 that it has created the world's first working memristor array layered atop a traditional CMOS circuit.

The term "memristor," which combines the words "memory" and "transistor," was invented in the 1970s.

Memory and logic functions are integrated in a memristor.

In 2012, project organizers reported the successful large-scale simulation of 530 billion neurons and 100 trillion synapses on the Blue Gene/Q Sequoia machine at Lawrence Livermore National Laboratory in California, which is the world's second fastest supercomputer.





The TrueNorth processor, a 5.4-billion-transistor chip with 4096 neurosynaptic cores coupled through an intrachip network that includes 1 million programmable spiking neurons and 256 million adjustable synapses, was presented by IBM in 2014.

Finally, in 2016, an end-to-end ecosystem (including scalable systems, software, and apps) that could fully use the TrueNorth CPU was unveiled.

At the time, there were reports on the deployment of applications such as interactive handwritten character recognition and data-parallel text extraction and recognition.

TrueNorth's cognitive computing chips have now been put to the test in simulations like a virtual-reality robot driving and playing the popular videogame Pong.

DARPA has been interested in the construction of brain-inspired computer systems since the 1980s.

Dharmendra Modha, director of IBM Almaden's Cognitive ComputingInitiative, and Narayan Srinivasa, head of HRL's Center for Neural and Emergent Systems, are leading the Project SyNAPSE project.


~ Jai Krishna Ponnappan

Find Jai on Twitter | LinkedIn | Instagram


You may also want to read more about Artificial Intelligence here.



See also: 


Cognitive Computing; Computational Neuroscience.


References And Further Reading


Defense Advanced Research Projects Agency (DARPA). 2008. “Systems of Neuromorphic Adaptive Plastic Scalable Electronics.” DARPA-BAA 08-28. Arlington, VA: DARPA, Defense Sciences Office.

Hsu, Jeremy. 2014. “IBM’s New Brain.” IEEE Spectrum 51, no. 10 (October): 17–19.

Merolla, Paul A., et al. 2014. “A Million Spiking-Neuron Integrated Circuit with a Scalable Communication Network and Interface.” Science 345, no. 6197 (August): 668–73.

Monroe, Don. 2014. “Neuromorphic Computing Gets Ready for the (Really) Big Time.” Communications of the ACM 57, no. 6 (June): 13–15.




Artificial Intelligence - The Human Brain Project

  



The European Union's major brain research endeavor is the Human Brain Project.

The project, which encompasses Big Science in terms of the number of participants and its lofty ambitions, is a multidisciplinary coalition of over one hundred partner institutions and includes professionals from the disciplines of computer science, neurology, and robotics.

The Human Brain Project was launched in 2013 as an EU Future and Emerging Technologies initiative with a budget of over one billion euros.

The ten-year project aims to make fundamental advancements in neuroscience, medicine, and computer technology.

Researchers working on the Human Brain Project hope to learn more about how the brain functions and how to imitate its computing skills.

Human Brain Organization, Systems and Cognitive Neuroscience, Theoretical Neuroscience, and implementations such as the Neuroinformatics Platform, Brain Simulation Platform, Medical Informatics Platform, and Neuromorphic Computing Platform are among the twelve subprojects of the Human Brain Project.

Six information and communication technology platforms were released by the Human Brain Project in 2016 as the main research infrastructure for ongoing brain research.

The project's research is focused on the creation of neuromorphic (brain-inspired) computer chips, in addition to infrastructure established for gathering and distributing data from the scientific community.

BrainScaleS is a subproject that uses analog signals to simulate the neuron and its synapses.

SpiNNaker (Spiking Neural Network Design) is a supercomputer architecture based on numerical models operating on special multicore digital devices.

The Neurorobotic Platform is another ambitious subprogram, where "virtual brain models meet actual or simulated robot bodies" (Fauteux 2019).

The project's modeling of the human brain, which includes 100 billion neurons with 7,000 synaptic connections to other neurons, necessitates massive computational resources.

Computer models of the brain are created on six supercomputers at research sites around Europe.

These models are currently being used by project researchers to examine illnesses.

The show has been panned.

Scientists protested in a 2014 open letter to the European Commission about the program's lack of openness and governance, as well as the program's small breadth of study in comparison to its initial goal and objectives.

The Human Brain Project has a new governance structure as a result of an examination and review of its financing procedures, needs, and stated aims.

 



Jai Krishna Ponnappan


You may also want to read more about Artificial Intelligence here.



See also: 


Blue Brain Project; Cognitive Computing; SyNAPSE.


Further Reading:


Amunts, Katrin, Christoph Ebell, Jeff Muller, Martin Telefont, Alois Knoll, and Thomas Lippert. 2016. “The Human Brain Project: Creating a European Research Infrastructure to Decode the Human Brain.” Neuron 92, no. 3 (November): 574–81.

Fauteux, Christian. 2019. “The Progress and Future of the Human Brain Project.” Scitech Europa, February 15, 2019. https://www.scitecheuropa.eu/human-brain-project/92951/.

Markram, Henry. 2012. “The Human Brain Project.” Scientific American 306, no. 6 

(June): 50–55.

Markram, Henry, Karlheinz Meier, Thomas Lippert, Sten Grillner, Richard Frackowiak, 

Stanislas Dehaene, Alois Knoll, Haim Sompolinsky, Kris Verstreken, Javier 

DeFelipe, Seth Grant, Jean-Pierre Changeux, and Alois Sariam. 2011. “Introduc￾ing the Human Brain Project.” Procedia Computer Science 7: 39–42.



Artificial Intelligence - What Is The Blue Brain Project (BBP)?

 



The brain, with its 100 billion neurons, is one of the most complicated physical systems known.

It is an organ that takes constant effort to comprehend and interpret.

Similarly, digital reconstruction models of the brain and its activity need huge and long-term processing resources.

The Blue Brain Project, a Swiss brain research program supported by the École Polytechnique Fédérale de Lausanne (EPFL), was founded in 2005. Henry Markram is the Blue Brain Project's founder and director.



The purpose of the Blue Brain Project is to simulate numerous mammalian brains in order to "ultimately, explore the stages involved in the formation of biological intelligence" (Markram 2006, 153).


These simulations were originally powered by IBM's BlueGene/L, the world's most powerful supercomputer system from November 2004 to November 2007.




In 2009, the BlueGene/L was superseded by the BlueGene/P.

BlueGene/P was superseded by BlueGene/Q in 2014 due to a need for even greater processing capability.

The BBP picked Hewlett-Packard to build a supercomputer (named Blue Brain 5) devoted only to neuroscience simulation in 2018.

The use of supercomputer-based simulations has pushed neuroscience research away from the physical lab and into the virtual realm.

The Blue Brain Project's development of digital brain reconstructions enables studies to be carried out in a "in silico" environment, a Latin pseudo-word referring to modeling of biological systems on computing equipment, using a regulated research flow and methodology.

The possibility for supercomputers to turn the analog brain into a digital replica suggests a paradigm change in brain research.

One fundamental assumption is that the digital or synthetic duplicate will act similarly to a real or analog brain.

Michael Hines, John W. Moore, and Ted Carnevale created the software that runs on Blue Gene hardware, a simulation environment called NEURON that mimics neurons.


The Blue Brain Project may be regarded a typical example of what was dubbed Big Science following World War II (1939–1945) because of the expanding budgets, pricey equipment, and numerous interdisciplinary scientists participating.


 


Furthermore, the scientific approach to the brain via simulation and digital imaging processes creates issues such as data management.

Blue Brain joined the Human Brain Project (HBP) consortium as an initial member and submitted a proposal to the European Commission's Future & Emerging Technologies (FET) Flagship Program.

The European Union approved the Blue Brain Project's proposal in 2013, and the Blue Brain Project is now a partner in a larger effort to investigate and undertake brain simulation.


~ Jai Krishna Ponnappan

You may also want to read more about Artificial Intelligence here.



See also: 

General and Narrow AI; Human Brain Project; SyNAPSE.


Further Reading

Djurfeldt, Mikael, Mikael Lundqvist, Christopher Johansson, Martin Rehn, Örjan Ekeberg, Anders Lansner. 2008. “Brain-Scale Simulation of the Neocortex on the IBM Blue Gene/L Supercomputer.” IBM Journal of Research and Development 52, no. 1–2: 31–41.

Markram, Henry. 2006. “The Blue Brain Project.” Nature Reviews Neuroscience 7, no. 2: 153–60.

Markram, Henry, et al. 2015. “Reconstruction and Simulation of Neocortical Microcircuitry.” Cell 63, no. 2: 456–92.



Analog Space Missions: Earth-Bound Training for Cosmic Exploration

What are Analog Space Missions? Analog space missions are a unique approach to space exploration, involving the simulation of extraterrestri...