Showing posts with label Ray Kurzweil. Show all posts
Showing posts with label Ray Kurzweil. Show all posts

AI - Technological Singularity

 




The emergence of technologies that could fundamentally change humans' role in society, challenge human epistemic agency and ontological status, and trigger unprecedented and unforeseen developments in all aspects of life, whether biological, social, cultural, or technological, is referred to as the Technological Singularity.

The Singularity of Technology is most often connected with artificial intelligence, particularly artificial general intelligence (AGI).

As a result, it's frequently depicted as an intelligence explosion that's pushing advancements in fields like biotechnology, nanotechnology, and information technologies, as well as inventing new innovations.

The Technological Singularity is sometimes referred to as the Singularity, however it should not be confused with a mathematical singularity, since it has only a passing similarity.

This singularity, on the other hand, is a loosely defined term that may be interpreted in a variety of ways, each highlighting distinct elements of the technological advances.

The thoughts and writings of John von Neumann (1903–1957), Irving John Good (1916–2009), and Vernor Vinge (1944–) are commonly connected with the Technological Singularity notion, which dates back to the second half of the twentieth century.

Several universities, as well as governmental and corporate research institutes, have financed current Technological Singularity research in order to better understand the future of technology and society.

Despite the fact that it is the topic of profound philosophical and technical arguments, the Technological Singularity remains a hypothesis, a guess, and a pretty open hypothetical idea.

While numerous scholars think that the Technological Singularity is unavoidable, the date of its occurrence is continuously pushed back.

Nonetheless, many studies agree that the issue is not whether or whether the Technological Singularity will occur, but rather when and how it will occur.

Ray Kurzweil proposed a more exact timeline for the emergence of the Technological Singularity in the mid-twentieth century.

Others have sought to give a date to this event, but there are no well-founded grounds in support of any such proposal.

Furthermore, without applicable measures or signs, mankind would have no way of knowing when the Technological Singularity has occurred.

The history of artificial intelligence's unmet promises exemplifies the dangers of attempting to predict the future of technology.

The themes of superintelligence, acceleration, and discontinuity are often used to describe the Technological Singularity.

The term "superintelligence" refers to a quantitative jump in artificial systems' cognitive abilities, putting them much beyond the capabilities of typical human cognition (as measured by standard IQ tests).

Superintelligence, on the other hand, may not be restricted to AI and computer technology.

Through genetic engineering, biological computing systems, or hybrid artificial–natural systems, it may manifest in human agents.

Superintelligence, according to some academics, has boundless intellectual capabilities.

The curvature of the time curve for the advent of certain key events is referred to as acceleration.

Stone tools, the pottery wheel, the steam engine, electricity, atomic power, computers, and the internet are all examples of technological advancement portrayed as a curve across time emphasizing the discovery of major innovations.

Moore's law, which is more precisely an observation that has been viewed as a law, represents the increase in computer capacity.

"Every two years, the number of transistors in a dense integrated circuit doubles," it says.

People think that the emergence of key technical advances and new technological and scientific paradigms will follow a super-exponential curve in the event of the Technological Singularity.

One prediction regarding the Technological Singularity, for example, is that superintelligent systems would be able to self-improve (and self-replicate) in previously unimaginable ways at an unprecedented pace, pushing the technological development curve far beyond what has ever been witnessed.

The Technological Singularity discontinuity is referred to as an event horizon, and it is similar to a physical idea linked with black holes.

The analogy to this physical phenomena, on the other hand, should be used with care rather than being used to credit the physical world's regularity and predictability to technological singularity.

The limit of our knowledge about physical occurrences beyond a specific point in time is defined by an event horizon (also known as a prediction horizon).

It signifies that there is no way of knowing what will happen beyond the event horizon.

The discontinuity or event horizon in the context of technological singularity suggests that the technologies that precipitate technological singularity would cause disruptive changes in all areas of human life, developments about which experts cannot even conjecture.

The end of humanity and the end of human civilization are often related with technological singularity.

According to some research, social order will collapse, people will cease to be major actors, and epistemic agency and primacy would be lost.

Humans, it seems, will not be required by superintelligent systems.

These systems will be able to self-replicate, develop, and build their own living places, and humans will be seen as either barriers or unimportant, outdated things, similar to how humans now consider lesser species.

One such situation is represented by Nick Bostrom's Paperclip Maximizer.

AI is included as a possible danger to humanity's existence in the Global Catastrophic Risks Survey, with a reasonably high likelihood of human extinction, placing it on par with global pandemics, nuclear war, and global nanotech catastrophes.

However, the AI-related apocalyptic scenario is not a foregone conclusion of the Technological Singularity.

In other more utopian scenarios, technology singularity would usher in a new period of endless bliss by opening up new opportunities for humanity's infinite expansion.

Another element of technological singularity that requires serious consideration is how the arrival of superintelligence may imply the emergence of superethical capabilities in an all-knowing ethical agent.

Nobody knows, however, what superethical abilities might entail.

The fundamental problem, however, is that superintelligent entities' higher intellectual abilities do not ensure a high degree of ethical probity, or even any level of ethical probity.

As a result, having a superintelligent machine with almost infinite (but not quite) capacities but no ethics seems to be dangerous to say the least.

A sizable number of scholars are skeptical about the development of the Technological Singularity, notably of superintelligence.

They rule out the possibility of developing artificial systems with superhuman cognitive abilities, either on philosophical or scientific grounds.

Some contend that while artificial intelligence is often at the heart of technological singularity claims, achieving human-level intelligence in artificial systems is impossible, and hence superintelligence, and thus the Technological Singularity, is a dream.

Such barriers, however, do not exclude the development of superhuman brains via the genetic modification of regular people, paving the door for transhumans, human-machine hybrids, and superhuman agents.

More scholars question the validity of the notion of the Technological Singularity, pointing out that such forecasts about future civilizations are based on speculation and guesswork.

Others argue that the promises of unrestrained technological advancement and limitless intellectual capacities made by the Technological Singularity legend are unfounded, since physical and informational processing resources are plainly limited in the cosmos, particularly on Earth.

Any promises of self-replicating, self-improving artificial agents capable of super-exponential technological advancement are false, since such systems will lack the creativity, will, and incentive to drive their own evolution.

Meanwhile, social opponents point out that superintelligence's boundless technological advancement would not alleviate issues like overpopulation, environmental degradation, poverty, and unparalleled inequality.

Indeed, the widespread unemployment projected as a consequence of AI-assisted mass automation of labor, barring significant segments of the population from contributing to society, would result in unparalleled social upheaval, delaying the development of new technologies.

As a result, rather than speeding up, political or societal pressures will stifle technological advancement.

While technological singularity cannot be ruled out on logical grounds, the technical hurdles that it faces, even if limited to those that can presently be determined, are considerable.

Nobody expects the technological singularity to happen with today's computers and other technology, but proponents of the concept consider these obstacles as "technical challenges to be overcome" rather than possible show-stoppers.

However, there is a large list of technological issues to be overcome, and Murray Shanahan's The Technological Singularity (2015) gives a fair overview of some of them.

There are also some significant nontechnical issues, such as the problem of superintelligent system training, the ontology of artificial or machine consciousness and self-aware artificial systems, the embodiment of artificial minds or vicarious embodiment processes, and the rights granted to superintelligent systems, as well as their role in society and any limitations placed on their actions, if this is even possible.

These issues are currently confined to the realms of technological and philosophical discussion.


~ Jai Krishna Ponnappan

Find Jai on Twitter | LinkedIn | Instagram


You may also want to read more about Artificial Intelligence here.



See also: 


Bostrom, Nick; de Garis, Hugo; Diamandis, Peter; Digital Immortality; Goertzel, Ben; Kurzweil, Ray; Moravec, Hans; Post-Scarcity, AI and; Superintelligence.


References And Further Reading


Bostrom, Nick. 2014. Superintelligence: Path, Dangers, Strategies. Oxford, UK: Oxford University Press.

Chalmers, David. 2010. “The Singularity: A Philosophical Analysis.” Journal of Consciousness Studies 17: 7–65.

Eden, Amnon H. 2016. The Singularity Controversy. Sapience Project. Technical Report STR 2016-1. January 2016.

Eden, Amnon H., Eric Steinhart, David Pearce, and James H. Moor. 2012. “Singularity Hypotheses: An Overview.” In Singularity Hypotheses: A Scientific and Philosophical Assessment, edited by Amnon H. Eden, James H. Moor, Johnny H. Søraker, and Eric Steinhart, 1–12. Heidelberg, Germany: Springer.

Good, I. J. 1966. “Speculations Concerning the First Ultraintelligent Machine.” Advances in Computers 6: 31–88.

Kurzweil, Ray. 2005. The Singularity Is Near: When Humans Transcend Biology. New York: Viking.

Sandberg, Anders, and Nick Bostrom. 2008. Global Catastrophic Risks Survey. Technical Report #2008/1. Oxford University, Future of Humanity Institute.

Shanahan, Murray. 2015. The Technological Singularity. Cambridge, MA: The MIT Press.

Ulam, Stanislaw. 1958. “Tribute to John von Neumann.” Bulletin of the American Mathematical Society 64, no. 3, pt. 2 (May): 1–49.

Vinge, Vernor. 1993. “The Coming Technological Singularity: How to Survive in the Post-Human Era.” In Vision 21: Interdisciplinary Science and Engineering in the Era of Cyberspace, 11–22. Cleveland, OH: NASA Lewis Research Center.


AI - What Is Superintelligence AI? Is Artificial Superintelligence Possible?

 


 

In its most common use, the phrase "superintelligence" refers to any degree of intelligence that at least equals, if not always exceeds, human intellect, in a broad sense.


Though computer intelligence has long outperformed natural human cognitive capacity in specific tasks—for example, a calculator's ability to swiftly interpret algorithms—these are not often considered examples of superintelligence in the strict sense due to their limited functional range.


In this sense, superintelligence would necessitate, in addition to artificial mastery of specific theoretical tasks, some kind of additional mastery of what has traditionally been referred to as practical intelligence: a generalized sense of how to subsume particulars into universal categories that are in some way worthwhile.


To this day, no such generalized superintelligence has manifested, and hence all discussions of superintelligence remain speculative to some degree.


Whereas traditional theories of superintelligence have been limited to theoretical metaphysics and theology, recent advancements in computer science and biotechnology have opened up the prospect of superintelligence being materialized.

Although the timing of such evolution is hotly discussed, a rising body of evidence implies that material superintelligence is both possible and likely.


If this hypothesis is proved right, it will very certainly be the result of advances in one of two major areas of AI research


  1. Bioengineering 
  2. Computer science





The former involves efforts to not only map out and manipulate the human DNA, but also to exactly copy the human brain electronically through full brain emulation, also known as mind uploading.


The first of these bioengineering efforts is not new, with eugenics programs reaching back to the seventeenth century at the very least.

Despite the major ethical and legal issues that always emerge as a result of such efforts, the discovery of DNA in the twentieth century, together with advances in genome mapping, has rekindled interest in eugenics.

Much of this study is aimed at gaining a better understanding of the human brain's genetic composition in order to manipulate DNA code in the direction of superhuman intelligence.



Uploading is a somewhat different, but still biologically based, approach to superintelligence that aims to map out neural networks in order to successfully transfer human intelligence onto computer interfaces.


  • The brains of insects and tiny animals are micro-dissected and then scanned for thorough computer analysis in this relatively new area of study.
  • The underlying premise of whole brain emulation is that if the brain's structure is better known and mapped, it may be able to copy it with or without organic brain tissue.



Despite the fast growth of both genetic mapping and whole brain emulation, both techniques have significant limits, making it less likely that any of these biological approaches will be the first to attain superintelligence.





The genetic alteration of the human genome, for example, is constrained by generational constraints.

Even if it were now feasible to artificially boost cognitive functioning by modifying the DNA of a human embryo (which is still a long way off), it would take an entire generation for the changed embryo to evolve into a fully fledged, superintelligent human person.

This would also imply that there are no legal or moral barriers to manipulating the human DNA, which is far from the fact.

Even the comparatively minor genetic manipulation of human embryos carried done by a Chinese physician as recently as November 2018 sparked international outrage (Ramzy and Wee 2019).



Whole brain emulation, on the other hand, is still a long way off, owing to biotechnology's limits.


Given the current medical technology, the extreme levels of accuracy necessary at every step of the uploading process are impossible to achieve.

Science and technology currently lack the capacity to dissect and scan human brain tissue with sufficient precision to produce full brain simulation results.

Furthermore, even if such first steps are feasible, researchers would face significant challenges in analyzing and digitally replicating the human brain using cutting-edge computer technology.




Many analysts believe that such constraints will be overcome, although the timeline for such realizations is unknown.



Apart from biotechnology, the area of AI, which is strictly defined as any type of nonorganic (particularly computer-based) intelligence, is the second major path to superintelligence.

Of course, the work of creating a superintelligent AI from the ground up is complicated by a number of elements, not all of which are purely logistical in nature, such as processing speed, hardware/software design, finance, and so on.

In addition to such practical challenges, there is a significant philosophical issue: human programmers are unable to know, and so cannot program, that which is superior to their own intelligence.





Much contemporary research on computer learning and interest in the notion of a seed AI is motivated in part by this worry.


Any machine capable of changing reactions to stimuli based on an examination of how well it performs in relation to a predetermined objective is defined as the latter.

Importantly, the concept of a seed AI entails not only the capacity to change its replies by extending its base of content knowledge (stored information), but also the ability to change the structure of its programming to better fit a specific job (Bostrom 2017, 29).

Indeed, it is this latter capability that would give a seed AI what Nick Bostrom refers to as "recursive self-improvement," or the ability to evolve iteratively (Bostrom 2017, 29).

This would eliminate the requirement for programmers to have an a priori vision of super intelligence since the seed AI would constantly enhance its own programming, with each more intelligent iteration writing a superior version of itself (beyond the human level).

Such a machine would undoubtedly cast doubt on the conventional philosophical assumption that robots are incapable of self-awareness.

This perspective's proponents may be traced all the way back to Descartes, but they also include more current thinkers like John Haugeland and John Searle.



Machine intelligence, in this perspective, is defined as the successful correlation of inputs with outputs according to a predefined program.




As a result, robots differ from humans in type, the latter being characterized only by conscious self-awareness.

Humans are supposed to comprehend the activities they execute, but robots are thought to carry out functions mindlessly—that is, without knowing how they work.

Should it be able to construct a successful seed AI, this core idea would be forced to be challenged.

The seed AI would demonstrate a level of self-awareness and autonomy not readily explained by the Cartesian philosophical paradigm by upgrading its own programming in ways that surprise and defy the forecasts of its human programmers.

Indeed, although it is still speculative (for the time being), the increasingly possible result of superintelligent AI poses a slew of moral and legal dilemmas that have sparked a lot of philosophical discussion in this subject.

The main worries are about the human species' security in the case of what Bostrom refers to as a "intelligence explosion"—that is, the creation of a seed AI followed by a possibly exponential growth in intellect (Bostrom 2017).



One of the key problems is the inherently unexpected character of such a result.


Humans will not be able to totally foresee how superintelligent AI would act due to the autonomy entailed by superintelligence in a definitional sense.

Even in the few cases of specialized superintelligence that humans have been able to construct and study so far—for example, robots that have surpassed humans in strategic games like chess and Go—human forecasts for AI have shown to be very unreliable.

For many critics, such unpredictability is a significant indicator that, should more generic types of superintelligent AI emerge, humans would swiftly lose their capacity to manage them (Kissinger 2018).





Of all, such a loss of control does not automatically imply an adversarial relationship between humans and superintelligence.


Indeed, although most of the literature on superintelligence portrays this relationship as adversarial, some new work claims that this perspective reveals a prejudice against machines that is particularly prevalent in Western cultures (Knight 2014).

Nonetheless, there are compelling grounds to believe that superintelligent AI would at the very least consider human goals as incompatible with their own, and may even regard humans as existential dangers.

For example, computer scientist Steve Omohundro has claimed that even a relatively basic kind of superintelligent AI like a chess bot would have motive to want the extinction of humanity as a whole—and may be able to build the tools to do it (Omohundro 2014).

Similarly, Bostrom has claimed that a superintelligence explosion would most certainly result in, if not the extinction of the human race, then at the very least a gloomy future (Bostrom 2017).

Whatever the benefits of such theories, the great uncertainty entailed by superintelligence is obvious.

If there is one point of agreement in this large and diverse literature, it is that if AI research is to continue, the global community must take great care to protect its interests.





Hardened determinists who claim that technological advancement is so tightly connected to inflexible market forces that it is simply impossible to change its pace or direction in any major manner may find this statement contentious.


According to this determinist viewpoint, if AI can deliver cost-cutting solutions for industry and commerce (as it has already started to do), its growth will proceed into the realm of superintelligence, regardless of any unexpected negative repercussions.

Many skeptics argue that growing societal awareness of the potential risks of AI, as well as thorough political monitoring of its development, are necessary counterpoints to such viewpoints.


Bostrom highlights various examples of effective worldwide cooperation in science and technology as crucial precedents that challenge the determinist approach, including CERN, the Human Genome Project, and the International Space Station (Bostrom 2017, 253).

To this, one may add examples from the worldwide environmental movement, which began in the 1960s and 1970s and has imposed significant restrictions on pollution committed in the name of uncontrolled capitalism (Feenberg 2006).



Given the speculative nature of superintelligence research, it is hard to predict what the future holds.

However, if superintelligence poses an existential danger to human existence, caution would dictate that a worldwide collaborative strategy rather than a free market approach to AI be used.



~ Jai Krishna Ponnappan

Find Jai on Twitter | LinkedIn | Instagram


You may also want to read more about Artificial Intelligence here.



See also: 


Berserkers; Bostrom, Nick; de Garis, Hugo; General and Narrow AI; Goertzel, Ben; Kurzweil, Ray; Moravec, Hans; Musk, Elon; Technological Singularity; Yudkowsky, Eliezer.



References & Further Reading:


  • Bostrom, Nick. 2017. Superintelligence: Paths, Dangers, Strategies. Oxford, UK: Oxford University Press.
  • Feenberg, Andrew. 2006. “Environmentalism and the Politics of Technology.” In Questioning Technology, 45–73. New York: Routledge.
  • Kissinger, Henry. 2018. “How the Enlightenment Ends.” The Atlantic, June 2018. https://www.theatlantic.com/magazine/archive/2018/06/henry-kissinger-ai-could-mean-the-end-of-human-history/559124/.
  • Knight, Heather. 2014. How Humans Respond to Robots: Building Public Policy Through Good Design. Washington, DC: The Project on Civilian Robotics. Brookings Institution.
  • Omohundro, Steve. 2014. “Autonomous Technology and the Greater Human Good.” Journal of Experimental & Theoretical Artificial Intelligence 26, no. 3: 303–15.
  • Ramzy, Austin, and Sui-Lee Wee. 2019. “Scientist Who Edited Babies’ Genes Is Likely to Face Charges in China.” The New York Times, January 21, 2019



Artificial Intelligence - Who Is Ray Kurzweil (1948–)?




Ray Kurzweil is a futurist and inventor from the United States.

He spent the first half of his career developing the first CCD flat-bed scanner, the first omni-font optical character recognition device, the first print-to-speech reading machine for the blind, the first text-to-speech synthesizer, the first music synthesizer capable of recreating the grand piano and other orchestral instruments, and the first commercially marketed, large-vocabulary speech recognition machine.

He has earned several awards for his contributions to technology, including the Technical Grammy Award in 2015 and the National Medal of Technology.

Kurzweil is the cofounder and chancellor of Singularity University, as well as the director of engineering at Google, where he leads a team that works on artificial intelligence and natural language processing.

Singularity University is a non-accredited graduate school founded on the premise of tackling great issues like renewable energy and space travel by gaining a deep understanding of the opportunities presented by technology progress's current acceleration.

The university, which is headquartered in Silicon Valley, has evolved to include one hundred chapters in fifty-five countries, delivering seminars, educational programs, and business acceleration programs.

While at Google, Kurzweil published the book How to Create a Mind (2012).

He claims that the neo cortex is a hierarchical structure of pattern recognizers in his Pattern Recognition Theory of Mind.

Kurzweil claims that replicating this design in machines might lead to the creation of artificial superintelligence.

He believes that by doing so, he will be able to bring natural language comprehension to Google.

Kurzweil's popularity stems from his work as a futurist.

Futurists are those who specialize in or are interested in the near-to-long-term future and associated topics.

They use well-established methodologies like scenario planning to carefully examine forecasts and construct future possibilities.

Kurzweil is the author of five national best-selling books, including The Singularity Is Near, which was named a New York Times best-seller (2005).

He has an extensive list of forecasts.

Kurzweil predicted the enormous development of international internet usage in the second part of the decade in his debut book, The Age of Intelligent Machines (1990).

He correctly predicted that computers will soon exceed humans in making the greatest investing choices in his second extremely important book, The Age of Spiritual Machines (where "spiritual" stands for "aware"), published in 1999.

Kurzweil prophesied in the same book that computers would one day "appear to have their own free will" and perhaps have "spiritual experiences" (Kurz weil 1999, 6).

Human-machine barriers will dissolve to the point that they will basically live forever as combined human-machine hybrids.

Scientists and philosophers have slammed Kurzweil's forecast of a sentient computer, claiming that awareness cannot be created by calculations.

Kurzweil tackles the phenome non of the Technological Singularity in his third book, The Singularity Is Near.

John von Neumann, a famous mathematician, created the word singularity.

In a 1950s chat with his colleague Stanislaw Ulam, von Neumann proposed that the ever-accelerating speed of technological progress "appears to be reaching some essential singularity in the history of the race beyond which human activities as we know them could not continue" (Ulam 1958, 5).

To put it another way, technological development would alter the course of human history.

Vernor Vinge, a computer scientist, math professor, and science fiction writer, rediscovered the word in 1993 and utilized it in his article "The Coming Technological Singularity." In Vinge's article, technological progress is more accurately defined as an increase in processing power.

Vinge investigates the idea of a self-improving artificial intelligence agent.

According to this theory, the artificial intelligent agent continues to update itself and grow technologically at an unfathomable pace, eventually resulting in the birth of a superintelligence—that is, an artificial intelligence that far exceeds all human intelligence.

In Vinge's apocalyptic vision, robots first become autonomous, then superintelligent, to the point where humans lose control of technology and machines seize control of their own fate.

Machines will rule the planet because technology is more intelligent than humans.

According to Vinge, the Singularity is the end of the human age.

Kurzweil presents an anti-dystopic Singularity perspective.

Kurzweil's core premise is that humans can develop something smarter than themselves; in fact, exponential advances in computer power make the creation of an intelligent machine all but inevitable, to the point that the machine will surpass humans in intelligence.

Kurzweil believes that machine intelligence and human intellect will converge at this moment.

The subtitle of The Singularity Is Near is When Humans Transcend Biology, which is no coincidence.

Kurzweil's overarching vision is based on discontinuity: no lesson from the past, or even the present, can aid humans in determining the way to the future.

This also explains why new types of education, such as Singularity University, are required.

Every sentimental look back to history, every memory of the past, renders humans more susceptible to technological change.

With the arrival of a new superintelligent, almost immortal race, history as a human construct will soon come to an end.

Posthumans, the next phase in human development, are known as immortals.

Kurzweil believes that posthumanity will be made up of sentient robots rather than people with mechanical bodies.

He claims that the future should be formed on the assumption that mankind is in the midst of an extraordinary period of technological advancement.

The Singularity, he believes, would elevate humanity beyond its wildest dreams.

While Kurzweil claims that artificial intelligence is now outpacing human intellect on certain activities, he also acknowledges that the moment of superintelligence, often known as the Technological Singularity, has not yet arrived.

He believes that individuals who embrace the new age of human-machine synthesis and are daring to go beyond evolution's boundaries would view humanity's future as positive. 




Jai Krishna Ponnappan


You may also want to read more about Artificial Intelligence here.



See also: 


General and Narrow AI; Superintelligence; Technological Singularity.



Further Reading:




Kurzweil, Ray. 1990. The Age of Intelligent Machines. Cambridge, MA: MIT Press.

Kurzweil, Ray. 1999. The Age of Spiritual Machines: When Computers Exceed Human Intelligence. New York: Penguin.

Kurzweil, Ray. 2005. The Singularity Is Near: When Humans Transcend Biology. New York: Viking.

Ulam, Stanislaw. 1958. “Tribute to John von Neumann.” Bulletin of the American Mathematical Society 64, no. 3, pt. 2 (May): 1–49.

Vinge, Vernor. 1993. “The Coming Technological Singularity: How to Survive in the Post-Human Era.” In Vision 21: Interdisciplinary Science and Engineering in the Era of Cyberspace, 11–22. Cleveland, OH: NASA Lewis Research Center.



 

Artificial Intelligence - Who Is Peter Diamandis?



Peter Diamandis (1961–) is a Harvard medical doctor who also has an MIT degree in aeronautical engineering.

He's also a serial entrepreneur, having created or cofounded twelve businesses, the most of which are still operational today, including International Space University and Singularity University.

The XPRIZE Foundation is his idea, and it hosts challenges in futuristic fields including space technology, low-cost mobile medical diagnostics, and oil spill cleanup.

Singularity University, which trains CEOs and graduate students on exponentially developing technology, is chaired by him.

The major difficulties that mankind faces are the focus of Diamandis' work.

His interests were first solely centered on space travel.

He believed that mankind should be a multiplanetary species when he was a teenager.

When he recognized that the US government was unwilling to fund NASA's lofty ambitions for colonization of other planets, he selected the private sector as the new space engine.

He launched many not-for-profit start-ups while still a student at Harvard and MIT, including International Space University (1987), which is now situated in France.

International Microspace, a for-profit microsatellite launcher, was created by him in 1989.

In 1992, Diamandis founded Zero Gravity, a firm dedicated to provide consumers with the sensation of weightlessness via parabolic flights.

Stephen Hawking is the most renowned of the 12,000 clients who have experienced zero gravity thus far.

In 2004, he established the XPRIZE Foundation, which is essentially a large incentive reward (five to ten million dol lars).

Diamandis and Ray Kurzweil cofounded Singularity University in 2008 to teach individuals how to conceive in terms of exponential technologies and to assist entrepreneurs use exponential technologies to solve humanity's most urgent challenges.

Planetary Resources, an asteroid mining firm that promises to create low-cost spacecraft, was established by him in 2012.

Diamandis is often referred to as a futurist.

If that's the case, he's a unique kind of futurist, since he doesn't extrapolate patterns or make intricate prophecies.

Diamandis' primary task is matchmaking: he finds major issues on the one hand and then connects them to viable remedies on the other.

He has developed incentive prizes and a network of influential billionaires to fund such prizes in order to uncover viable answers.

Larry Page, James Cameron, and the late Ross Perot are among the billionaires who have backed Diamandis' endeavors.

Diamandis began by focusing on the difficulty of getting humans into space, but over the last three decades, he has broadened his focus to include all of humanity's big concerns in exploration, including space and seas, life sciences, education, global development, energy, and the environment.

The next frontier for Diamandis is increased longevity, or living longer.

He believes that the causes of early mortality may be eliminated, and that the general people can live longer and healthier lives.

He also thinks that a person's mental peak may be extended by 20 years.

In 2014, Diamandis founded Human Longevity, a biotechnology business based in San Diego, alongside genomics specialist Craig Venter and stem cell pioneer Robert Hariri to tackle the challenge of longevity.

Four years later, he cofounded Celularity, a longevity-focused firm that offers stem cell-based antiaging therapies, alongside Hariri.



~ Jai Krishna Ponnappan

You may also want to read more about Artificial Intelligence here.



See also: 


Kurzweil, Ray; Technological Singularity.


Further Reading:


Diamandis, Peter. 2012. Abundance: The Future Is Better Than You Think. New York: Free Press.

Guthrie, Julian. 2016. How to Make a Spaceship: A Band of Renegades, an Epic Race, and the Birth of Private Spaceflight. New York: Penguin Press.




Analog Space Missions: Earth-Bound Training for Cosmic Exploration

What are Analog Space Missions? Analog space missions are a unique approach to space exploration, involving the simulation of extraterrestri...