Showing posts with label automated machine learning. Show all posts
Showing posts with label automated machine learning. Show all posts

Artificial Intelligence - Machine Learning Regressions.

 


"Machine learning," a phrase originated by Arthur Samuel in 1959, is a kind of artificial intelligence that produces results without requiring explicit programming.

Instead, the system learns from a database on its own and improves over time.

Machine learning techniques have a wide range of applications (e.g., computer vision, natural language processing, autonomous gaming agents, classification, and regressions) and are used in practically every sector due to their resilience and simplicity of implementation (e.g., tech, finance, research, education, gaming, and navigation).

Machine learning algorithms may be generically classified into three learning types: supervised, unsupervised, and reinforcement, notwithstanding their vast range of applications.

Supervised learning is exemplified by machine learning regressions.

They use algorithms that have been trained on data with labeled continuous numerical outputs.

The quantity of training data or validation criteria required once the regression algorithm has been suitably trained and verified will depend on the issues being addressed.

For data with comparable input structures, the newly developed predictive models give inferred outputs.

These aren't static models.

They may be updated on a regular basis with new training data or by displaying the actual right outputs on previously unlabeled inputs.

Despite machine learning methods' generalizability, there is no one program that is optimal for all regression issues.

When choosing the best machine learning regression method for the present situation, there are a lot of things to think about (e.g., programming languages, available libraries, algorithm types, data size, and data structure).





There are machine learning programs that employ single or multivariable linear regression approaches, much like other classic statistical methods.

These models represent the connections between a single or several independent feature variables and a dependent target variable.

The models provide linear representations of the combined input variables as their output.

These models are only applicable to noncomplex and small data sets.

Polynomial regressions may be used with nonlinear data.

This necessitates the programmers' knowledge of the data structure, which is often the goal of utilizing machine learning models in the first place.

These methods are unlikely to be appropriate for most real-world data, but they give a basic starting point and might provide users with models that are straightforward to understand.

Decision trees, as the name implies, are tree-like structures that map the input features/attributes of programs to determine the eventual output goal.

The answer to the condition of that node splits into edges in a decision tree algorithm, which starts with the root node (i.e., an input variable).

A leaf is defined as an edge that no longer divides; an internal edge is defined as one that continues to split.

For example, age, weight, and family diabetic history might be used as input factors in a dataset of diabetic and nondiabetic patients to estimate the likelihood of a new patient developing diabetes.

The age variable might be used as the root node (e.g., age 40), with the dataset being divided into those who are more than or equal to 40 and those who are 39 and younger.

The model provides that leaf as the final output if the following internal node after picking more than or equal to 40 is whether or not a parent has/had diabetes, and the leaf estimates the affirmative responses to have a 60% likelihood of this patient acquiring diabetes.

This is a very basic decision tree that demonstrates the decision-making process.

Thousands of nodes may readily be found in a decision tree.

Random forest algorithms are just decision tree mashups.

They are made up of hundreds of decision trees, the ultimate outputs of which are the averaged outputs of the individual trees.

Although decision trees and random forests are excellent at learning very complex data structures, they are prone to overfitting.

With adequate pruning (e.g., establishing the n values limits for splitting and leaves) and big enough random forests, overfitting may be reduced.

Machine learning techniques inspired by the neural connections of the human brain are known as neural networks.


Neurons are the basic unit of neural network algorithms, much as they are in the human brain, and they are organized into numerous layers.

The input layer contains the input variables, the hidden layers include the layers of neurons (there may be numerous hidden levels), and the output layer contains the final neuron.

A single neuron in a feedforward process 

(a) takes the input feature variables, 

(b) multiplies the feature values by a weight, 

(c) adds the resultant feature products, together with a bias variable, and 

(d) passes the sums through an activation function, most often a sigmoid function.


The partial derivative computations of the previous neurons and neural layers are used to alter the weights and biases of each neuron.

Backpropagation is the term for this practice.


The output of the activation function of a single neuron is distributed to all neurons in the next hidden layer or final output layer.

As a result, the projected value is the last neuron's output.

Because neural networks are exceptionally adept at learning exceedingly complicated variable associations, programmers may spend less time reconstructing their data.

Neural network models, on the other hand, are difficult to interpret due to their complexity, and the intervariable relationships are largely hidden.

When used on extremely big datasets, neural networks operate best.

They need meticulous hyper-tuning and considerable processing capacity.

For data scientists attempting to comprehend massive datasets, machine learning has become the standard technique.

Machine learning systems are always being improved in terms of accuracy and usability by researchers.

Machine learning algorithms, on the other hand, are only as useful as the data used to train the model.

Poor data produces dramatically erroneous outcomes, while biased data combined with a lack of knowledge deepens societal disparities.

 



Jai Krishna Ponnappan


You may also want to read more about Artificial Intelligence here.



See also: 


Algorithmic Bias and Error; Automated Machine Learning; Deep Learning; Explainable AI; Gender and AI.



Further Reading:


Garcia, Megan. 2016. “Racist in the Machine: The Disturbing Implications of Algorithmic Bias.” World Policy Journal 33, no. 4 (Winter): 111–17.

GĂ©ron, Aurelien. 2019. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol, CA: O’Reilly.



Artificial Intelligence - What Is Automated Machine Learning?

 


 

Machine learning algorithms are created with the goal of detecting and describing complex patterns in massive datasets.

By taking the uncertainty out of constructing instruments of convenience, automated machine learning (AutoML) aims to deliver these analytical tools to everyone interested in large data research.

"Computational analysis pipelines" is the name given to these instruments.

While there is still a lot of work to be done in automated machine learning, early achievements show that it will be an important tool in the arsenal of computer and data scientists.

It will be critical to customize these software packages to beginner users, enabling them to undertake difficult machine learning activities in a user-friendly way while still allowing for the integration of domain-specific knowledge and model interpretation and action.

These latter objectives have received less attention, but they will need to be addressed in future study before AutoML is able to tackle complicated real-world situations.

Automated machine learning is a relatively young field of research that has risen in popularity in the past ten years as a consequence of the widespread availability of strong open-source machine learning frameworks and high-performance computers.

AutoML software packages are currently available in both open-source and commercial versions.

Many of these packages allow for the exploration of machine learning pipelines, which can include feature transformation algorithms like discretization (which converts continuous equations, functions, models, and variables into discrete equations, functions, and so on for digital computers), feature engineering algorithms like principal components analysis (which removes large dimensions of "less important" data while keeping a subset of "more important" variables), and so on.

Bayesian optimization, ensemble techniques, and genetic programming are examples of stochastic search strategies utilized in AutoML.

Stochastic search techniques may be used to solve deterministic issues that have random noise or deterministic problems that have randomness injected into them.

New methods for extracting "signal from noise" in datasets, as well as finding insights and making predictions, are currently being developed and tested.

One of the difficulties with machine learning is that each algorithm examines data in a unique manner.

That is, each algorithm recognizes and classifies various patterns.

Linear support vector machines and k-nearest neighbor algorithms are excellent at detecting linear patterns, whereas k-nearest neighbor methods are effective at detecting nonlinear patterns.

The problem is that scientists don't know which algorithm(s) to employ when they start their job since they don't know what patterns they're looking for in the data.

The majority of users select an algorithm that they are acquainted with or that seems to operate well across a variety of datasets.

Some people may choose an algorithm because the models it generates are simple to compare.

There are a variety of reasons why various algorithms are used for data analysis.

Nonetheless, the approach selected may not be optimal for a particular data set.

This task is especially tough for a new user who may not be aware of the strengths and disadvantages of each algorithm.

A grid search is one way to address this issue.

Multiple machine learning algorithms and parameter settings are applied to a dataset in a systematic manner, with the results compared to determine which approach is the best.

This is a frequent strategy that may provide positive outcomes.

The grid search's drawback is that it may be computationally demanding when a large number of methods, each with several parameter values, need to be examined.

Random forests are classification algorithms comprised of numerous decision trees with a number of regularly used parameters that must be fine-tuned for best results on a specific dataset.

The accepted machine learning approach adjusts the data using parameters, which are configuration variables.

The maximum number of characteristics that may be used in the decision trees that are constructed and assessed is a typical parameter.

Automated machine learning may aid in the management of the complicated, computationally costly combinatorial explosion that occurs during the execution of specialized investigations.

A single parameter might have 10 distinct configurations, for example.

Another parameter might be the number of decision trees to be included in the forest, which could be 10 in total.

Another ten possible parameters might be the minimum amount of samples that would be permitted in the "leaves" of the decision trees.

Based on the examination of just three parameters, this example gives 1000 distinct alternative parameter configurations.

A data scientist looking at ten different machine learning methods, each with 1000 different parameter values, would have to undertake 10,000 different studies.

Hyperparameters, which are characteristics of the analyses that are established ahead of time and hence not learnt from the data, are added on top of these studies.

They are often established by the data scientist using a variety of rules of thumb or values derived from previous challenges.

Comparisons of numerous alternative cross-validation procedures or the influence of sample size on findings are examples of hyperparameter setups.

Hundreds of hyperparameter combinations may need to be assessed in a typical case.

The data scientist would have to execute a total of one million analyses using a mix of machine learning algorithms, parameter settings, and hyperparameter settings.

Given the computer resources available to the user, so many distinct studies might be prohibitive depending on the sample size of the data to be examined, the number of features, and the kinds of machine learning algorithms used.

Using a stochastic search to approximate the optimum mix of machine learning algorithms, parameter settings, and hyperparameter settings is an alternate technique.

Until a computational limit is reached, a random number generator is employed to sample from all potential possibilities.

Before making a final decision, the user manually explores various parameter and hyperparameter settings around the optimal technique.

This has the virtue of being computationally controllable, but it has the disadvantage of being stochastic, since chance may not explore the best combinations.

To address this, a stochastic search algorithm with a heuristic element—a practical technique, guide, or rule—may be created that can adaptively explore algorithms and settings while improving over time.

Because they automate the search for optimum machine learning algorithms and parameters, approaches that combine stochastic searches with heuristics are referred to as automated machine learning.

A stochastic search could begin by creating a variety of machine learning algorithm, parameter setting, and hyperparameter setting combinations at random and then evaluate each one using cross-validation, a method for evaluating the effectiveness of a machine learning model.

The best of these is chosen, modified at random, and assessed once again.

This procedure is continued until a computational limit or a performance goal has been met.

This stochastic search is guided by the heuristic algorithm.

Optimal search strategy development is a hot topic in academia right now.

There are various benefits to using AutoML.

To begin with, it has the potential to be more computationally efficient than the exhaustive grid search method.

Second, it makes machine learning more accessible by removing some of the guesswork involved in choosing the best machine learning algorithm and its many parameters for a particular dataset.

This allows even the most inexperienced user to benefit from machine learning.

Third, if generalizability measurements are included into the heuristic being utilized, it may provide more repeatable outcomes.

Fourth, including complexity metrics into the heuristic might result in more understandable outcomes.

Fifth, if expert knowledge is included into the heuristic, it may produce more actionable findings.

AutoML techniques do, however, present certain difficulties.

The first is the risk of overfitting, which occurs when numerous distinct methods are evaluated, resulting in an analysis that matches existing data too closely but does not fit or forecast unknown or fresh data.

The more analytical techniques used on a dataset, the more likely it is to learn the data's noise, resulting in a model that is hard to generalize to new data.

With any AutoML technique, this must be thoroughly handled.

Second, AutoML is computationally demanding in and of itself.

Third, AutoML approaches may create very complicated pipelines including several machine learning algorithms.

This may make interpretation considerably more challenging than just selecting a single analytic method.

Fourth, this is a very new field.

Despite some promising early instances, ideal AutoML solutions may not have yet been devised.



~ Jai Krishna Ponnappan

You may also want to read more about Artificial Intelligence here.



See also: Deep Learning.

Further Reading

Feurer, Matthias, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. 2015. “Efficient and Robust Automated Machine Learning.” In Advances in Neural Information Processing Systems, 28. Montreal, Canada: Neural Information Processing Systems. http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.

Hutter, Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, eds. 2019. Automated Machine Learning: Methods, Systems, Challenges. New York: Springer.



Analog Space Missions: Earth-Bound Training for Cosmic Exploration

What are Analog Space Missions? Analog space missions are a unique approach to space exploration, involving the simulation of extraterrestri...