Showing posts with label mathematician. Show all posts
Showing posts with label mathematician. Show all posts

Artificial Intelligence - Who Is Rudy Rucker?

 




Rudolf von Bitter (German: Rudolf von Bitter) Rucker (1946–) is an American novelist, mathematician, and computer scientist who is the great-great-great-grandson of philosopher Georg Wilhelm Friedrich Hegel (1770–1831).

Rucker is most recognized for his sarcastic, mathematics-heavy science fiction, while having written in a variety of fictional and nonfictional genres.

His Ware tetralogy (1982–2000) is regarded as one of the cyberpunk literary movement's fundamental works.

Rucker graduated from Rutgers University with a Ph.D. in mathematics in 1973.

He shifted from teaching mathematics in colleges in the US and Germany to teaching computer science at San José State University, where he ultimately became a professor before retiring in 2004.

Rucker has forty publications to his credit, including science fiction novels, short story collections, and nonfiction works.

His nonfiction works span the disciplines of mathematics, cognitive science, philosophy, and computer science, with topics such as the fourth dimension and the meaning of computation among them.

The popular mathematics book Infinity and the Mind: The Science and Philosophy of the Infinite (1982), which he wrote, is still in print at Princeton University Press.

Rucker established himself in the cyberpunk genre with the Ware series (Software 1982, Wetware 1988, Freeware 1997, and Realware 2000).

Since Dick's death in 1983, the famous American science fiction award has been handed out every year since Software received the inaugural Philip K. Dick Award.

Wetware was also awarded this prize in 1988, in a tie with Paul J. McAuley's Four Hundred Billion Stars.

The Ware Tetralogy, which Rucker has made accessible for free online as an e-book under a Creative Commons license, was reprinted in 2010 as a single volume.

Cobb Anderson, a retired roboticist who has fallen from favor for creating sentient robots with free agency, known as boppers, is the protagonist of the Ware series.

The boppers want to reward him by giving him immortality via mind uploading; unfortunately, this procedure requires the full annihilation of Cobb's brain, which the boppers do not consider necessary hardware.

In Wetware, a bopper named Berenice wants to impregnate Cobb's niece in order to produce a human-machine hybrid.

Humanity retaliates by unleashing a mold that kills boppers, but this chipmould thrives on the cladding that covers the boppers' exteriors, resulting in the creation of an organic-machine hybrid in the end.

Freeware is based on these lifeforms, which are now known as moldies and are generally detested by biological people.

This story also includes extraterrestrial intelligences, who in Realware provide superior technology and the power to change reality to different types of human and artificial entities.

The book Postsingular, published in 2007, was the first of Rucker's works to be distributed under a Creative Commons license.

The book, set in San Francisco, addresses the emergence of nanotechnology, first in a dystopian and later in a utopian scenario.

In the first section, a rogue engineer creates nants, which convert Earth into a virtual replica of itself, destroying the planet in the process, until a youngster is able to reverse their programming.

The narrative then goes on to depict orphids, a new kind of nanotechnology that allows people to become cognitively enhanced, hyperintelligent creatures.

Although the Ware tetralogy and Postsingular have been classified as cyberpunk books, Rucker's literature has been seen as difficult to label, since it combines hard science with humor, graphic sex, and constant drug use.

"Happily, Rucker himself has established a phrase to capture his unusual mix of commonplace reality and outraeous fantasy: transrealism," writes science fiction historian Rob Latham (Latham 2005, 4).

"Transrealism is not so much a form of SF as it is a sort of avant-garde literature," Rucker writes in "A Transrealist Manifesto," published in 1983.  (Rucker 1983, 7).


"This means writing SF about yourself, your friends, and your local surroundings, transmuted in some science-fictional fashion," he noted in a 2002 interview. Using actual life as a basis lends your writing a literary quality and keeps you from using clichés" (Brunsdale 2002, 48).


Rucker worked on the short story collection Transreal Cyberpunk with cyberpunk author Bruce Sterling, which was released in 2016.

Rucker chose to publish his book Nested Scrolls after suffering a brain hemorrhage in 2008.

It won the Emperor Norton Award for "amazing innovation and originality unconstrained by the constraints of petty reason" when it was published in 2011.

Million Mile Road Trip (2019), a science fiction book about a group of human and nonhuman characters on an intergalactic road trip, is his most recent work.


~ Jai Krishna Ponnappan

Find Jai on Twitter | LinkedIn | Instagram


You may also want to read more about Artificial Intelligence here.



See also: 


Digital Immortality; Nonhuman Rights and Personhood; Robot Ethic.


References & Further Reading:


Brunsdale, Mitzi. 2002. “PW talks with Rudy Rucker.” Publishers Weekly 249, no. 17 (April 29): 48. https://archive.publishersweekly.com/?a=d&d=BG20020429.1.82&srpos=1&e=-------en-20--1--txt-txIN%7ctxRV-%22PW+talks+with+Rudy+Rucker%22---------1.

Latham, Rob. 2005. “Long Live Gonzo: An Introduction to Rudy Rucker.” Journal of the Fantastic in the Arts 16, no. 1 (Spring): 3–5.

Rucker, Rudy. 1983. “A Transrealist Manifesto.” The Bulletin of the Science Fiction Writers of America 82 (Winter): 7–8.

Rucker, Rudy. 2007. “Postsingular.” https://manybooks.net/titles/ruckerrother07postsingular.html.

Rucker, Rudy. 2010. The Ware Tetralogy. Gaithersburg, MD: Prime Books, 2010.




Artificial Intelligence - Who Was John McCarthy?

 


John McCarthy  (1927–2011) was an American computer scientist and mathematician who was best known for helping to develop the subject of artificial intelligence in the late 1950s and pushing the use of formal logic in AI research.

McCarthy was a creative thinker who earned multiple accolades for his contributions to programming languages and operating systems research.

Throughout McCarthy's life, however, artificial intelligence and "formalizing common sense" remained his primary research interest (McCarthy 1990).

As a graduate student, McCarthy first met the concepts that would lead him to AI at the Hixon conference on "Cerebral Mechanisms in Behavior" in 1948.

The symposium was place at the California Institute of Technology, where McCarthy had just finished his undergraduate studies and was now enrolled in a graduate mathematics program.

In the United States, machine intelligence had become a subject of substantial academic interest under the wide term of cybernetics by 1948, and many renowned cyberneticists, notably Princeton mathematician John von Neumann, were in attendance at the symposium.

McCarthy moved to Princeton's mathematics department a year later, when he discussed some early ideas inspired by the symposium with von Neumann.

McCarthy never published the work, despite von Neumann's urging, since he believed cybernetics could not solve his problems concerning human knowing.

McCarthy finished a PhD on partial differential equations at Princeton.

He stayed at Princeton as an instructor after graduating in 1951, and in the summer of 1952, he had the chance to work at Bell Labs with cyberneticist and inventor of information theory Claude Shannon, whom he persuaded to collaborate on an edited collection of writings on machine intelligence.

Automata Studies received contributions from a variety of fields, ranging from pure mathematics to neuroscience.

McCarthy, on the other hand, felt that the published studies did not devote enough attention to the important subject of how to develop intelligent machines.

McCarthy joined the mathematics department at Stanford in 1953, but was fired two years later, maybe because he spent too much time thinking about intelligent computers and not enough time working on his mathematical studies, he speculated.

In 1955, he accepted a position at Dartmouth, just as IBM was preparing to establish the New England Computation Center at MIT.

The New England Computation Center gave Dartmouth access to an IBM computer that was installed at MIT and made accessible to a group of New England colleges.

McCarthy met IBM researcher Nathaniel Rochester via the IBM initiative, and he recruited McCarthy to IBM in the summer of 1955 to work with his research group.

McCarthy persuaded Rochester of the need for more research on machine intelligence, and he submitted a proposal to the Rockefeller Foundation for a "Summer Research Project on Artificial Intelligence" with Rochester, Shannon, and Marvin Minsky, a graduate student at Princeton, which included the first known use of the phrase "artificial intelligence." Despite the fact that the Dartmouth Project is usually regarded as a watershed moment in the development of AI, the conference did not go as McCarthy had envisioned.

The Rockefeller Foundation supported the proposal at half the proposed budget since it was for such an unique field of research with a relatively young professor as author, and because Shannon's reputation carried substantial weight with the Foundation.

Furthermore, since the event took place over many weeks in the summer of 1955, only a handful of the guests were able to attend the whole period.

As a consequence, the Dartmouth conference was a fluid affair with an ever-changing and unpredictably diverse guest list.

Despite its chaotic implementation, the meeting was crucial in establishing AI as a distinct area of research.

McCarthy won a Sloan grant to spend a year at MIT, closer to IBM's New England Computation Center, while still at Dartmouth in 1957.

McCarthy was given a post in the Electrical Engineering department at MIT in 1958, which he accepted.

Later, he was joined by Minsky, who worked in the mathematics department.

McCarthy and Minsky suggested the construction of an official AI laboratory to Jerome Wiesner, head of MIT's Research Laboratory of Electronics, in 1958.

McCarthy and Minsky agreed on the condition that Wiesner let six freshly accepted graduate students into the laboratory, and the "artificial intelligence project" started teaching its first generation of students.

McCarthy released his first article on artificial intelligence in the same year.

In his book "Programs with Common Sense," he described a computer system he named the Advice Taker that would be capable of accepting and understanding instructions in ordinary natural language from nonexpert users.

McCarthy would later define Advice Taker as the start of a study program aimed at "formalizing common sense." McCarthy felt that everyday common sense notions, such as comprehending that if you don't know a phone number, you'll need to look it up before calling, might be written as mathematical equations and fed into a computer, enabling the machine to come to the same conclusions as humans.

Such formalization of common knowledge, McCarthy felt, was the key to artificial intelligence.

McCarthy's presentation, which was presented at the United Kingdom's National Physical Laboratory's "Symposium on Mechansation of Thought Processes," helped establish the symbolic program of AI research.

McCarthy's research was focused on AI by the late 1950s, although he was also involved in a range of other computing-related topics.

In 1957, he was assigned to a group of the Association for Computing Machinery charged with developing the ALGOL programming language, which would go on to become the de facto language for academic research for the next several decades.

He created the LISP programming language for AI research in 1958, and its successors are widely used in business and academia today.

McCarthy contributed to computer operating system research via the construction of time sharing systems, in addition to his work on programming languages.

Early computers were large and costly, and they could only be operated by one person at a time.

McCarthy identified the necessity for several users throughout a major institution, such as a university or hospital, to be able to use the organization's computer systems concurrently via computer terminals in their offices from his first interaction with computers in 1955 at IBM.

McCarthy pushed for study on similar systems at MIT, serving on a university committee that looked into the issue and ultimately assisting in the development of MIT's Compatible Time-Sharing System (CTSS).

Although McCarthy left MIT before the CTSS work was completed, his advocacy with J.C.R.

Licklider, future office head at the Advanced Research Projects Agency, the predecessor to DARPA, while a consultant at Bolt Beranek and Newman in Cambridge, was instrumental in helping MIT secure significant federal support for computing research.

McCarthy was recruited to join what would become the second department of computer science in the United States, after Purdue's, by Stanford Professor George Forsythe in 1962.

McCarthy insisted on going only as a full professor, which he believed would be too much for Forsythe to handle as a young researcher.

Forsythe was able to persuade Stanford to grant McCarthy a full chair, and he moved to Stanford in 1965 to establish the Stanford AI laboratory.

Until his retirement in 2000, McCarthy oversaw research at Stanford on AI topics such as robotics, expert systems, and chess.

McCarthy was up in a family where both parents were ardent members of the Communist Party, and he had a lifetime interest in Russian events.

He maintained numerous professional relationships with Soviet cybernetics and AI experts, traveling and lecturing there in the mid-1960s, and even arranged a chess match between a Stanford chess computer and a Russian equivalent in 1965, which the Russian program won.

He developed many foundational concepts in symbolic AI theory while at Stanford, such as circumscription, which expresses the idea that a computer must be allowed to make reasonable assumptions about problems presented to it; otherwise, even simple scenarios would have to be specified in such exacting logical detail that the task would be all but impossible.

McCarthy's accomplishments have been acknowledged with various prizes, including the 1971 Turing Award, the 1988 Kyoto Prize, admission into the National Academy of Sciences in 1989, the 1990 Presidential Medal of Science, and the 2003 Benjamin Franklin Medal.

McCarthy was a brilliant thinker who continuously imagined new technologies, such as a space elevator for economically transporting stuff into orbit and a system of carts strung from wires to better urban transportation.

In a 2008 interview, McCarthy was asked what he felt the most significant topics in computing now were, and he answered without hesitation, "Formalizing common sense," the same endeavor that had inspired him from the start.


~ Jai Krishna Ponnappan

Find Jai on Twitter | LinkedIn | Instagram


You may also want to read more about Artificial Intelligence here.



See also: 


Cybernetics and AI; Expert Systems; Symbolic Logic.


References & Further Reading:


Hayes, Patrick J., and Leora Morgenstern. 2007. “On John McCarthy’s 80th Birthday, in Honor of His Contributions.” AI Magazine 28, no. 4 (Winter): 93–102.

McCarthy, John. 1990. Formalizing Common Sense: Papers, edited by Vladimir Lifschitz. Norwood, NJ: Albex.

Morgenstern, Leora, and Sheila A. McIlraith. 2011. “John McCarthy’s Legacy.” Artificial Intelligence 175, no. 1 (January): 1–24.

Nilsson, Nils J. 2012. “John McCarthy: A Biographical Memoir.” Biographical Memoirs of the National Academy of Sciences. http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/mccarthy-john.pdf.



Analog Space Missions: Earth-Bound Training for Cosmic Exploration

What are Analog Space Missions? Analog space missions are a unique approach to space exploration, involving the simulation of extraterrestri...